
N88-16436
A LEARNING APPRENTICE FOR SOFTWARE PARTS COMPOSITION

Bradley P. Allen
Peter L. Holtzman

Inference Corporation

5300 W. Century Blvd.

Los Angeles, CA 90045

ABSTRACT

We provide an overview of the knowledge acquisition

component of the Bauhaus [i], a prototype CASE workstation for

the development of domain-specific automatic programming systems

(D-SAPS). D-SAPS use domain knowledge in the refinement of a

description of a application program into a compilable

implementation [2]. Our approach to the construction of D-SAPS

is to automate the process of refining a description of a

program, expressed in an object-oriented domain language, into a

configuration of software parts that implement the behavior of

the domain objects.

We view this process of software parts composition as a

problem-solving task. By structuring a problem-solving task so

that the types of knowledge required are made explicit, the

acquisition of knowledge useful in performing the task can be

made simpler, and the resulting knowledge base becomes easier to

maintain [5]. The Bauhaus incorporates a problem-solving

architecture based on the RIME [7] and SOAR [3] systems that

provides such a structure. In this architecture, the task of

refining an initial program description is represented as a

goal. A goal determines a problem space and an initial state in

that space. A problem space is a set of operators that are

useful in the satisfaction of a given goal. An operator

transforms a state in the problem space into a new state, or

creates a subgoal, or recognizes when a given goal is satisfied.

The goal of refining the initial program description is

satisfied when the system has composed a set of software parts

to form an implementation of the program.

Operators are applied by the system by iterating through

three stages:

i. Propose the set of operators that can be applied to the

current state;

2. Choose an operator from the set to apply to the current

State; and

3. A_p_ the operator, generating the next current state.

User intervention in the choice of an operator is requested when

the system reaches an impasse: when no operator applies, then

the system is unable to express a preference for an operator, or

when the system's preferences are inconsistent. The types of

user intervention that can occur correspond to the types of

knowledge needed by the system to avoid similar impasses in the

future. The system generalizes from observed instances of user

intervention to create new operators and preferences. In this

manner, the programming knowledge of the system is automatically

423 PRECEDING PAGE BLANK NO]" FLLIV,&I)



increased through its use as a software development tool by

experienced application developers. This form of knowledge

acquisition through the observation of user intervention in the

design process allows us to characterize the Bauhaus as a

learninq system[4], similar to the VEXED VLSI design system [6].

Implementation of the Bauhaus is currently underway using ART

running on a Symbolics Lisp machine under the Genera 7.1

environment, integrated with the Symbolics Ada programming

environment.

References

i. Allen, B.P. and Holtzman, P.L. Simplifying the Construction

of Domain-Specific Automatic Programming Systems: The NASA

Automated Software Development Workstation Project. Proceedings

of the Space Operations Automation and Robotics Conference,

NASA/U.S. Air Force, August, 1987.

2. Barstow, D. "Domain-Specific Automatic Programming". IEEE

Transactions on Software Enqineerinq ii, ii (November 1985).

3. Laird, J.E., Newell, A. And Rosenbloom, P.S. "SOAR: A
Architecture for General Intelligence". Artificial Intelliqence

3__3, 1 (1987).

4. Mitchell, T.M., Mahadevan, S., and Steinberg, L.I. LEAP: oA

leaning Apprentice for VLSI Design. Proceedings of the Ninth

International Joint Conference on Artificial Intelligence,

August, 1985.

5. Soloway, E., Bachant, J. and Jensen, K. Assessing the

Maintainablity of XCON-in-RIME: Coping with the Problems of a

VERY Large Rule Base. Proceedings of the National Conference on

Artificial Intelligence, AAAI, July, 1987.

6. Steinberg, L.I. Design as Refinement Plus Constraint

Propagation: The VEXED Experience. Proceedings of the National

Conference on Artificial Intelligence, AAAI,July, 1987.

7. Van de Brug, A., Bachant, J. and McDermott, J.

of RI". IEEE Expert 1,3(Fall 1986).

"The Taming

424




